
Hardware Specifics 6-1

 (16 Apr 2004)

 * *
 * Section 6 - Hardware Specifics *
 * *

 This section of the manual contains pages dealing in a
general way with dynamic memory allocation in GAMESS, the
BLAS routines, and vectorization.

 The remaining portions of this section consist of
specific suggestions for each type of machine. You should
certainly read the section pertaining to your computer.
It is probably a good idea to look at the rest of the
machines as well, you may get some ideas! The directions
for executing GAMESS are given, along with hints and other
tidbits. Any known problems with older versions of
compilers are described in the control language files
themselves.

 The currently supported machines are all running Unix.
The embedded versions for IBM mainframes and VAX/VMS have
not been used in many years, and are no longer described
here. There are binary versions for Windows available on
our web site, but we do not supply a source code version
for Windows (except that the Unix code will compile under
the Cygwin Unix environment for Windows). Please note that
with the OS X system, the Macintosh is to be considered as
a system running Unix, and is therefore well supported.

Dynamic memory in GAMESS __ 2
BLAS routines ___ 4
Vectorization of GAMESS__ 5
Notes for specific machines ___ 7

Hardware Specifics 6-2

Dynamic memory in GAMESS

 GAMESS allocates its working memory from one large
pool of memory. This pool consists of a single large
array, which is partitioned into smaller arrays as GAMESS
needs storage. When GAMESS is done with a piece of
memory, that memory is freed for other uses.

 The units for memory are words, a term which GAMESS
defines as the length used for floating point numbers,
64 bits, that is 8 bytes per word.

 GAMESS contains two memory allocation schemes. For
some systems, a primitive implementation allocates a large
array of a *FIXED SIZE* in a common named /FMCOM/. This
is termed the "static" implementation, and the parameter
MEMORY= in $SYSTEM cannot request an amount larger than
chosen at compile time. Wherever possible, a "dynamic"
allocation of the memory is done, so that MEMORY= can (in
principle) request any amount. The memory management
routines take care of the necessary details to fool the
rest of the program into thinking the large memory pool
exists in common /FMCOM/.

 Computer systems which have a "static" memory
allocation are IBM mainframes running VM or MVS to which
we have no direct access for testing purposes. If your
job requires a larger amount of memory than is available,
your only recourse is to recompile UNPORT.SRC after
choosing a larger value for MEMSIZ in SETFM.

 Computer which have "dynamic" memory allocation are
VMS machines and all Unix systems. In principle,
MEMORY= can request any amount you want to use, without
recompiling. In practice, your operating system will
impose some limitation. As outlined below, common sense
imposes a lower limit than your operating system will.

 By default, most systems allocate a moderate amount of
memory: 750,000 words. This amount is adequate for
many small HF (RHF, UHF, ROHF, GVB) runs, although
RUNTYP=HESSIAN may require more. Large GUGA runs (CI,
MCSCF) may require an increased value for MEMORY in
$SYSTEM, perhaps to 2,000,000 words. EXETYP=CHECK runs
will always tell you the amount of memory you need.

 Many places in GAMESS implement an out of memory

Hardware Specifics 6-3

algorithm, whenever the in memory algorithm can require an
excessive amount. The in memory algorithms will perform
very poorly when the work arrays reside in virtual memory
rather than physical memory. This excessive page faulting
activity can be avoided by letting GAMESS choose its out
of core algorithms. These are programmed such that large
amounts of numbers are transferred to and from disk at the
same time, as opposed to page faulting for just a few
values in that page. So, pick an amount for MEMORY= that
will reside in the physical memory of your system!

 The object code and local storage for GAMESS compiles
to about 25 Mbytes on most systems. Add this value to the
number of Mbytes requested by MEMORY= (the conversion is
multiply by 8, then divide by 1024 twice). For example,
10,000,000 words of memory leads to a total program size of
105 Mbytes. Depending on how many GAMESS jobs you run
simultaneously, and the total number of Mbytes of physical
memory installed in your system, you may be able to
increase the MEMORY= value.

 A general guideline is to select an amount of memory
that will not be paged often. If your system has 64
Mbytes, and you are running only two copies of GAMESS at
one time, a reasonable choice for MEMORY= would be to
increase GAMESS to a total size of 28 Mbytes. That leaves
some memory for the operating system.

 The routines involved in memory allocation are VALFM,
to determine the amount currently in use, GETFM to grab
a block of memory, and RETFM to return it. Note that
calls to RETFM must be in exactly inverse order of the
calls to GETFM. SETFM is called once at the beginning of
GAMESS to initialize, and BIGFM at the end prints a "high
water mark" showing the maximum memory demand. GOTFM
tells how much memory is not yet allocated.

Hardware Specifics 6-4

BLAS routines

 The BLAS routines (Basic Linear Algebra Subprograms)
are designed to perform primitive vector operations, such
as dot products, or vector scaling. They are often found
implemented in assembler language in a system library,
even on scalar machines. If this is the case, you should
use the vendor's version!

 The BLAS are a simple way to achieve BOTH moderate
vectorization AND portability. The BLAS are easy to
implement in FORTRAN, and are provided in the file
BLAS.SRC in case your computer does not have these
routines in a library.

 The BLAS are defined in single and double precision,
e.g. SDOT and DDOT. The very wonderful implementation
of generic functions in FORTRAN 77 has not yet been
extended to the BLAS. Accordingly, all BLAS calls in
GAMESS use the double precision form, e.g. DDOT. The
source code activator translates these double precision
names to single precision, for machines such as Cray
which run in single precision.

 Machines which probably do provide assembler versions
of the BLAS are all vector machines. They are also now
frequently found on scalar machines. The compiling
scripts use the system BLAS library whereever this is
provided as a standard part of the operating system.

 If you have a specialized BLAS library on your machine,
for example IBM's ESSL, Compaq's CXML, or Sun's Performance
Library, using them can produce significant speedups in
correlated calculations. The compiling scripts attempt to
detect your library, but if they fail to do so, it is easy
to use one:
 a) remove the compilation of 'blas' from 'compall',
 b) if the library includes level 3 BLAS, set the value
 of 'BLAS3' to true in 'comp',
 c) in 'lked', set the value of BLAS to a blank, and
 set libraries appropriately, e.g. to '-lessl'.

 The reference for the level 1 BLAS is
C.L.Lawson, R.J.Hanson, D.R.Kincaid, F.T.Krogh
ACM Trans. on Math. Software 5, 308-323(1979)

Hardware Specifics 6-5

Vectorization of GAMESS

 As a result of a Joint Study Agreement between IBM and
NDSU, GAMESS has been tuned for the IBM 3090 vector
facility (VF), together with its high performance vector
library known as the ESSL. This vectorization work took
place from March to September of 1988, and resulted in
a program which is significantly faster in scalar mode, as
well as one which can take advantage (at least to some
extent) of a vector processor's capabilities. Since our
move to ISU we no longer have access to IBM mainframes,
but support for the VF, as well as MVS and VM remains
embedded within GAMESS. Several other types of vector
computers are supported as well.

 Anyone who is using a current version of the program,
even on scalar machines, owes IBM their thanks both for
NDSU's having had access to a VF, and the programming time
to do code improvements in the second phase of the JSA,
from late 1988 to the end of 1990.

 Some of the vectorization consisted of rewriting loops
in the most time consuming routines, so that a vectorizing
compiler could perform automatic vectorization on these
loops. This was done without directives, and so any
vectorizing compiler should be able to recognize the same
loops.

 In cases where your compiler allows you to separate
scalar optimization from vectorization, you should choose
not to vectorize the following sections: INT2A, GRD2A,
GRD2B, and GUGEM. These sections have many very small
loops, that will run faster in scalar mode. The remaining
files will benefit, or at least not suffer from automatic
compiler vectorization.

 The highest level of performance, obtained by
vectorization at the matrix level (as opposed to the
vector level operations represented by the BLAS) is
contained in the file VECTOR.SRC. This file contains
replacements for the scalar versions of routines by the
same names that are contained in the other source code
modules. VECTOR should be loaded after the object code
from GAMESS.SRC, but before the object code in all the
other files, so that the vector versions from VECTOR are
the ones used.

Hardware Specifics 6-6

 Most of the routines in VECTOR consist of calls to
vendor specific libraries for very fast matrix operations,
such as IBM's Engineering and Scientific Subroutine
Library (ESSL). Look at the top of VECTOR.SRC to see
what vector computers are supported currently.

 If you are trying to bring GAMESS up on some other
vector machine, do not start with VECTOR. The remaining
files (excepting BLAS, which are probably in a system
library) represent a complete, working version of GAMESS.
Once you have verified that all the regular code is
running correctly, then you can adapt VECTOR to your
machine for the maximum possible performance.

 Vector mode SCF runs in GAMESS on the IBM 3090 will
proceed at about 90 percent of the scalar speed on these
machines. Runs which compute an energy gradient may
proceed slightly faster than this. MCSCF and CI runs
which are dominated by the integral transformation step
will run much better in vector mode, as the transformation
step itself will run in about 1/4 time the scalar time on
the IBM 3090 (this is near the theoretical capability of
the 3090's VF). However, this is not the only time
consuming step in an MCSCF run, so a more realistic
expectation is for MCSCF runs to proceed at 0.3-0.6 times
the scalar run. If very large CSF expansions are used
(say 20,000 on up), however, the main bottleneck is the CI
diagonalization and there will be negligible speedup in
vector mode. Several stages in an analytic hessian
calculation benefit significantly from vector processing.

 A more quantitative assessment of this can be reached
from the following CPU times obtained on a IBM 3090-200E,
with and without use of its vector facility:

 ROHF grad RHF E RHF hess MCSCF E
 ------- ------ ------- ------
scalar 168 (1) 164 (1) 917 (1) 903 (1)
vector 146 (0.87) 143 (0.87) 513 (0.56) 517 (0.57)

Hardware Specifics 6-7

Notes for specific machines

 GAMESS will run on many kinds of UNIX computers. These
systems runs the gamut from very BSD-like systems to very
ATT-like systems, and even AIX. Our experience has been
that all of these UNIX systems differ from each other. So,
putting aside all the hype about "open systems", we divide
the Unix world into four classes:

 Supported: Apple MAC under OS X, HP/Compaq/DEC AXP,
HP PA-RISC, IBM RS/6000, Intel Pentium and AMD equivalents,
Intel Itanium2, and Sun ultraSPARC.
These are the only types of computer we currently have at
ISU, so these are the only systems we can be reasonably
sure will work (at least on the hardware model and O/S
release we are using). Both the source code and control
language is correct for these.

 Acquainted: Compaq SuperCluster, Cray PVP, Cray T3E,
Cray X1, Fujitsu PP, IBM SP, NEC SX, and SGI MIPS.
We don't have any of these systems at ISU, and so we can't
guarantee that these work. GAMESS has been run on each of
these, but perhaps not recently. The source code for these
systems is probably correct, but the control language may
not be. Be sure to run all the test cases to verify that
the current GAMESS still works on these brands.

 Jettisoned: Alliant, Apollo, Ardent, Celerity, Convex,
Cray T3D, DECstations, FPS model 500, Fujitsu AP and VPP,
HP Exemplar, Hitachi SR, IBM AIX mainframes, Intel Paragon,
Kendall Square, MIPS, NCube, and Thinking Machines.
In most cases the company is out of business, or the number
of machines in use has dropped to near zero. Of these,
only the Celerity version's passing should be mourned, as
this was the original UNIX port of GAMESS, in July 1986.

 Terra Incognita: everything else! You will have to
decide on the contents of UNPORT, write the scripts, and
generally use your head.

 * * * * *

 You should have a file called "readme.unix" at hand
before you start to compile GAMESS. These directions
should be followed carefully. Before you start, read the
notes on your system below, and read the compiler clause
for your system in 'comp', as notes about problems with

Hardware Specifics 6-8

certain compiler versions are kept there.

 Execution is by means of the 'rungms' script, and you
can read a great deal more about its DDIKICK command in the
installation guide ‘readme.ddi’. Note in particular that
execution of GAMESS now uses System V shared memory on many
systems, and this will often require reconfiguring the
system’s limits on shared memory and semaphores, along with
a reboot. Full details of this are in ‘readme.ddi.

 Users may find examplesof the scalability of parallel
runs in the Programmer's Reference chapter of this manual.

 * * * * * *

 Compaq AXP: These are scalar systems, running Tru64.
At least, those are the year 2000 names, by now Compaq has
been merged into HP. So, this category includes all AXP
machines labeled Digital or Compaq or HP on the front, and
whose O/S is called OSF1, Digital Unix, or Tru64. It also
includes systems running Linux for AXP, see just below.
The unique identifier is therefore the AXP chip, "alpha".

 High end Compaq systems such as the SuperCluster
product support a SHMEM implementation for one-sided
message passing, use target 'compaq-shmem' for this.

 The compiling script invokes the f77 compiler, so read
'comp' if you have the f90 compiler instead. This version
was changed to use native 64 bit integers in fall 1998.

 You can also run GAMESS on AXP Linux, by using the
Tru64 Compaq compilers, which permit the Tru64 version to
run. Do not use g77 which allocates 32 bit integers, as
the system's malloc routine for dynamic memory allocation
returns 64 bit addresses, which simply cannot be stored in
32 bit integers. The Compaq compilers can easily generate
64 bit integers, so obtain FORTRAN and C from
 http://www.unix.digital.com/linux/software.htm
Then compile and link using target 'compaq-axp'. If and
only if you are using the original DDI, make the following
edits by hand before compiling:
 1. vi ddi/oldsrc/ddisoc.c, to add a 2nd underscore
 to all "soc" routine names in #ifdef COMPAQ clause.
 2. vi ddi/oldsrc/ddikick.c and ddisoc.c, to change the
 #ifdef COMPAQ clause's type cast of "getsockcast"
 from "int" to "unsigned int".

Hardware Specifics 6-9

 Cray PVP: this means C90, J90, SV1 type vector systems.
Thanks to Dick Hilderbrandt, Kim Baldridge, Richard Walsh,
Howard Pritchard, and Charles Castevens for their help with
Cray systems and UNICOS. This version should be reasonably
reliable, but we don't run on Cray vector systems often
anymore. TCP/IP sockets and System V memory are the
parallel scheme used.

 Cray T3E: A massively parallel computer from Cray.
This machine uses its native SHMEM library for effective
use of distributed data (and all other messages too).
We use this version on a DoD T3E regularly, and it should
install and run quite well. We thank Howard Pritchard for
his help with understanding SHMEM.

 Cray X1: this is a vector processor system using the
SHMEM library as its parallel support. This version was
supplied by Ted Packwood of Cray in March 2003.

 As of April 2004, none of the 3 Cray systems have been
tested using the new DDI message library. We welcome
accounts of how these might work.

 Digital: See Compaq above.

 Fujitsu: The PrimePower is a parallel system based on
SPARC CPUs, and so is much like a Sun, although it uses
different compilers. The control language for this was
written by Roger Amos at Australian National University
Supercomputer Facility in March 2003. This version is not
yet verified for the new DDI library.

 HP: Any PA-RISC series workstation. The HP-UX port
is due to Fred Senese, Don Phillips, and Tsuneo Hirano.
Dave Mullally at HP has kept this version going since,
and in 1998, sited a HP loaner system at ISU. In 2001 he
sent us an upgrade to HP-UX 11, so the HP version now
assumes use of f90 under this O/S. The 64 bit HP version
is due to Zygmunt Krawczyk in 2002. Read Zygmunt's notes
on the use of 64 bit HP-UX on our web page. The 'hpux32'
version can be considered to be carefully checked since
it is in use at ISU, but please be a little more careful
checking tests if you try 'hpux64'.

 IBM: "superscalar" RS/6000. There are two targets for
IBM workstations, namely "ibm32" and "ibm64", neither of
these should be used on a SP system. The 64 bit version
should be used only in the following conditions:

Hardware Specifics 6-10

 a) you have a Power3 machine, or newer
 b) you are running AIX 4.3.1, or higher
 c) you have XL FORTRAN 5.1.1, or higher
All other situations should compile with "ibm32". In case
you use 32 bit compilation on a Power3, you should change
the 'comp' script so that ARCH and TUNE are "pwr3", but
leave these unchanged for every other chip IBM has sold.
The compiling script will activate *IBM lines everywhere,
except *UNX in IOLIB and *AIX in UNPORT. Parallelization
is achieved using the TCP/IP socket calls found in AIX.

 IBM-SP: The SP parallel systems. This will be a 64
bit implementation. The new DDI library will operate
with LAPI support for one-sided messaging, but the final
correctness of this version has not yet been completed,
as of April 2004.

 Linux-ia64: this means the Intel Itanium family of
processors, running under 64-bit modified versions of the
RedHat operating system. Such systems are available from
a number of vendors, including the SGI Altix, NEC T7, HP,
and others. The compilers are Intel's efc for FORTRAN
and ecc for C. Intel's MKL library for the BLAS can be
linked for extra performance. These compilers rely upon
GNU libraries, so use a libgcc at version 3 or higher in
order to avoid any problems with 2 GByte disk file sizes.
Please see more in the 'comp' script about obtaining these
compilers, and their version numbers. Fred Arnold of
Northwestern University created the initial port, in
June 2002. Additional assistance with this version came
from NEC's Jan Fredin, including use of NEC's MathKeisan
library for the BLAS. Since June 2003, we have had a SGI
Altix on loan at Iowa State University, so this version is
now well tested as a full 64 bit program. It relies on
TCP/IP sockets and System V memory for message passing.
Compile actvte by "efc -o actvte.x -Vaxlib actvte.f".
Be sure to use the MKL library only in serial mode, with
the MKL_SERIAL environment value set to YES.

 Note: AMD's chips such as Athlon have normally been
completely compatible with Intel's, and so can be used
interchangeably. This is not true of AMD's 64 bit Opteron,
since the Intel compilers generate only the Itanium2's
instruction set. At this time, you must use an Opteron
in 32 bit mode, as target 'linux-pc'.

 Linux-PC: this means Intel/Athlon type systems. This
version is originally due to Pedro Vazquez in Brazil in

Hardware Specifics 6-11

1993, and modified by Klaus-Peter Gulden in Germany. The
usefulness of this version has matched the steady growth of
interest in PC Unix, due to the improvement in CPU, memory,
and disks, to 32-bit (but not 64-bit) workstation levels.
We acquired a 266 MHz Pentium-II PC running RedHat Linux in
August 1997, and found it performed flawlessly. In 1998
we obtained six 400 MHz Pentium-IIs for sequential use, and
in 1999 a 16 PC cluster, running in parallel day in and day
out. Six Athlon 1.2 GHz processors installed in 2001 use
RedHat 7.1. Thus most versions of RedHat from 4.2 to 7.1
have been tried by us, and all are OK. Since 6.0, the
preferred compiler is g77, prior to that use f2c/gcc. The
compiling scripts default to g77, but contain comments to
allow you to switch back to f2c/gcc. Beware, there is a
serious bug in the I/O library of old versions of g77
(any 2.xx version), see our web page for a fix for this
library error.

 Parallelization is accomplished using Linux's TCP/IP
socket library and System V memory to support the DDI
operations.

 If you have Intel's ifc compiler, some tips from Pawel
Dziekonski can be found in "comp" and "lked". Pawel says
that this is about 15% faster than g77. The file ddisoc.c
must be hand-edited to have only one trailing underscore
in subprogram names.

 If you have Portland Group's pgf77 compiler, some tips
from Fred Arnold and Brian Salter-Duke can be found in
the "comp" and "lked" scripts. Fred said at one point that
pgf77 is about 10% faster than g77. The file ddisoc.c
must be hand-edited to have only one trailing underscore
in subprogram names.

 We make no effort to support pgf77 or ifc, or for that
matter MPICH, and therefore recommend you use RedHat, g77,
and the built-in TCP/IP socket calls, to be safest.

 Downloading a BLAS library from the network for use on
LINUX is heartily recommended. Some URL's are
 http://www.cs.utk.edu/~ghenry/distrib/index.htm <- ASCI
 http://math-atlas.sourceforge.net
 http://netlib.bell-labs.com/netlib/atlas/archives
 http://developer.intel.com/software/products/mkl
 http://www.cs.utexas.edu/users/flame/ITXGEMM
We are using the ASCI 1.2F precompiled Pentium2 library for
both P2 and Athlon processors. If your library isn't named
/usr/local/bin/libblas-asci.a, simply change the "comp" and

Hardware Specifics 6-12

the "lked" scripts to match your choice of name.

 Macintosh OS X: This is for Mac running OS X, which
is a genuine Unix system "under the hood". This version
closely resembles the Linux version for PC, including 2 GB
file size limitations. The compiler is g77, but check out
the notes in ‘comp’ about xlf if you have a G5. Notes in
'comp' will tell you how to get these compilers. TCP/IP
sockets and System V memory are used as the message passing
transport for parallel jobs. Added bonus: A Macintosh will
be capable of running the MacMolPlt visualization program.

 NEC SX: vector system. This port was done by Janet
Fredin at the NEC Systems Laboratory in Texas in 1993, and
she periodically updates this version, including parallel
usage, most recently in Oct. 2003. You should select both
*UNX and *SNG when manually activating ACTVTE.CODE, and
compile actvte by "f90 -ew -o actvte.x actvte.f".

 Silicon Graphics: This refers to MIPS based systems.
For SGI's Itanium2 based systems marketed as "Altix", see
the 'linux-ia64 section'. This version is used at a fair
number of external sites, so the source code is reliable.
SGI has sold machines with R2000, R3000, R4x00, R5000,
R8000, R10000, R12000, and R14000 processors. You can type
"hinv" to find out which you have. The targets "sgi32" and
"sgi64"assume that you have the newest processor, if not,
change the architecture from '-r12000' and instruction
set from '-64 -mips4' if you have older equipment. (For
example, the instruction set might be '-mips2' on very old
machines, or '-n32 -mips3'). For many years, the compiler
optimization was set at -O2 to try to avoid numerical
problems, but in 2002 it was reset to -O3. If you find the
test examples don't work, please recompile with the safer
level -O2 optimization.

 The SGI version uses System V shared memory now. Do not
attempt to use MPI, or the web patches from Omar Stradella
that you might be familiar with from previous versions of
GAMESS on Origin.

 Sun: scalar system. This version is set up for the
ultraSPARC chips, running Solaris. The 64 bit version will
run faster (due to using the SPARC v9 rather than the v8
instruction set), so most people should select the "sun64"
compiling target. If you have an older SPARC system, or if
you are running Solaris 2.6, modify the 'comp' script as
necessary. Install the SunPerf library from the compiler
suite for maximum BLAS performance. Parallelization is

Hardware Specifics 6-13

accomplished using TCP/IP sockets. Since Sun located an
E450 system at ISU in 1998, and two Sunfire 280R systems in
2002, this version is very reliable.

